

Epistemic Taxonomy of Assertions

Vitaliy Dolgorukov
vdolgorukov@hse.ru
«HSE English Philosophy Colloquium»,
February 17, 2017

Plan

- ▶ Types of Assertions and Some Theoretical Difficulties
- ► Elements of Epistemic/Doxatic Logic
- ► Strong Common Belief
- ► An Epistemic Taxonomy of Assertions

TYPES OF ASSERTIONS

1. A: 'X is a fine friend' (Context: X has be trayed a secret of A)

- 1. A: 'X is a fine friend' (Context: X has be trayed a secret of A)
- 2. *A*: 'I'm not an *A*'

- 1. A: 'X is a fine friend' (Context: X has be trayed a secret of A)
- 2. A: 'I'm not an A'
- 3. 'Boys are boys'

- 1. A: 'X is a fine friend' (Context: X has be trayed a secret of A)
- 2. A: 'I'm not an A'
- 3. 'Boys are boys'
- $4. \ '2 = 2'$

- 1. A: 'X is a fine friend' (Context: X has be trayed a secret of A)
- 2. A: 'I'm not an A'
- 3. 'Boys are boys'
- $4. \ '2 = 2'$
- 5. 'You are the cream in my coffee'

- 1. A: 'X is a fine friend' (Context: X has be trayed a secret of A)
- 2. A: 'I'm not an A'
- 3. 'Boys are boys'
- $4. \ '2 = 2'$
- 5. 'You are the cream in my coffee'
- 6. 'Sky is blue'

Theoretical Difficulties

Maxim of Quality:

Do not say what you believe to be false.

Do not say that for which you lack adequate evidence.

- ► Flouting of the Maxim of Quality
- ► irony, metaphor, etc
- ► deception vs. irony

Maxim of Quantity

Maxim of Quantity: Be as informative as required.

- ► 'Boys are Boys'
- ► 'A is A'

Epistemic Presuppositions

S: φ to H at c.

Epistemic presuppositions describe S's and H's higher-order epistemic and doxatic attitudes (φ, c) .

Meta-knowledge and implicature

know vs. think «...the speaker thinks and (would expect the hearer to think that the speaker thinks)...» [Grice 1989, p.31] «...he (and knows that I know that he knows...» [Grice 1989, p.31]

Types of Presuppositions

Semantic presupposition:

should be associated with specific triggers ('stop', 'continue', 'regret', ...)

Pragmatic presupposition:

«A speaker presupposes that P at a given moment in a conversation just in case he is disposed to act, in his linguistic behavior, as if takes the truth of P for granted, and as if he assumes that his audience recognizes that he is doing so». [Stalnaker 1975, p.32]

The syntax of language \mathcal{L}_E is given by the following formula $\varphi := p \mid \varphi \land \psi \mid \varphi \lor \psi \mid \varphi \rightarrow \psi \mid \neg \varphi \mid B_i \varphi \mid K_i \varphi$ $K_i \varphi$ - 'an agent i knows that φ ' $B_i \varphi$ - 'an agent i believes that φ '

$$\mathcal{M} = \langle \mathcal{A}, W, \{\sim_i\}_{i \in \mathcal{A}}, \{\preceq_i\}_{i \in \mathcal{A}}, V \rangle$$
, where

ightharpoonup - set of agents

$$\mathcal{M} = \langle \mathcal{A}, W, \{\sim_i\}_{i \in \mathcal{A}}, \{\preceq_i\}_{i \in \mathcal{A}}, V \rangle$$
, where

- ightharpoonup set of agents
- ightharpoonup W set of possible worlds

$$\mathcal{M} = \langle \mathcal{A}, W, \{\sim_i\}_{i \in \mathcal{A}}, \{\preceq_i\}_{i \in \mathcal{A}}, V \rangle$$
, where

- $ightharpoonup \mathcal{A}$ set of agents
- \blacktriangleright W set of possible worlds
- $ightharpoonup \sim_i$ relation on W for i

$$\mathcal{M} = \langle \mathcal{A}, W, \{\sim_i\}_{i \in \mathcal{A}}, \{\preceq_i\}_{i \in \mathcal{A}}, V \rangle$$
, where

- ightharpoonup set of agents
- ightharpoonup W set of possible worlds
- $ightharpoonup \sim_i$ relation on W for i
- $ightharpoonup \leq_i \text{relation on } W \text{ for } i$

$$\mathcal{M} = \langle \mathcal{A}, W, \{\sim_i\}_{i \in \mathcal{A}}, \{\leq_i\}_{i \in \mathcal{A}}, V \rangle$$
, where

- $ightharpoonup \mathcal{A}$ set of agents
- ightharpoonup W set of possible worlds
- $ightharpoonup \sim_i$ relation on W for i
- $ightharpoonup \prec_i$ relation on W for i
- $ightharpoonup V: Var \mathcal{L}_E \to \mathcal{P}(W)$

 $ightharpoonup K_i \varphi o \varphi$

- $K_i \varphi \to \varphi$
- $\blacktriangleright \ \forall w'(w' \sim_i w')$

- $ightharpoonup K_i \varphi o \varphi$
- $\blacktriangleright \forall w'(w' \sim_i w')$
- $\blacktriangleright K_i \varphi \to K_i K_i \varphi$

- $ightharpoonup K_i \varphi o \varphi$
- $\blacktriangleright \forall w'(w' \sim_i w')$
- $ightharpoonup K_i \varphi
 ightharpoonup K_i K_i \varphi$
- $\forall w' \forall w'' \forall w''' ((w' \sim_i w'' \land w'' \sim_i w''') \rightarrow w' \sim_i w''')$

- $ightharpoonup K_i \varphi o \varphi$
- $\blacktriangleright \forall w'(w' \sim_i w')$
- $ightharpoonup K_i \varphi
 ightharpoonup K_i K_i \varphi$
- $\blacktriangleright \forall w' \forall w'' \forall w''' ((w' \sim_i w'' \land w'' \sim_i w''') \rightarrow w' \sim_i w''')$

- $ightharpoonup K_i \varphi o \varphi$
- $\blacktriangleright \forall w'(w' \sim_i w')$
- $ightharpoonup K_i \varphi
 ightharpoonup K_i K_i \varphi$
- $\blacktriangleright \forall w' \forall w'' \forall w''' ((w' \sim_i w'' \land w'' \sim_i w''') \rightarrow w' \sim_i w''')$
- $ightharpoonup \neg K_i \varphi \to K_i \neg K_i \varphi$
- $\blacktriangleright \forall w' \forall w'' ((w' \sim_i w'' \land w' \sim_i w''') \rightarrow w'' \sim_i w''')$

Properties

- $K_i \varphi \to \varphi$ (Factivity)
- $K_i \varphi \to K_i K_i \varphi$ (Positive Introspection)
- $ightharpoonup \neg K_i \varphi \to K_i \neg K_i \varphi$ (Negative Introspection)
- ▶ $B_i \varphi \to B_i B_i \varphi$ (Positive Introspection)
- ▶ $\neg B_i \varphi \rightarrow B_i \neg B_i \varphi$ (Negative Introspection)

Truth in a Model

 φ is true at state w in a model \mathcal{M} is defined by induction

- $\blacktriangleright \mathcal{M}, w \models p \text{ iff } w \in V(p)$
- $\blacktriangleright \mathcal{M}, w \models \neg \varphi \text{ iff } \mathcal{M}, w \not\models \varphi$
- $\blacktriangleright \mathcal{M}, w \models \varphi \land \psi \text{ iff } \mathcal{M}, w \models \varphi \text{ and } \mathcal{M}, w \models \psi$
- $\blacktriangleright \mathcal{M}, w \models \varphi \lor \psi \text{ iff } \mathcal{M}, w \models \varphi \text{ or } \mathcal{M}, w \models \psi$
- $\blacktriangleright \mathcal{M}, w \models \varphi \rightarrow \psi \text{ iff } \mathcal{M}, w \not\models \varphi \text{ or } \mathcal{M}, w \models \psi$
- $\mathcal{M}, w \models K_i \varphi \text{ iff } \forall w'(w \sim_i w' \to \mathcal{M}, w' \models \varphi)$
- $\blacktriangleright \mathcal{M}, w \models B_i \varphi \text{ iff } \forall w'(w' \in max_{\preceq_i}([w]_i) \to \mathcal{M}, w' \models \varphi)$
- $\blacktriangleright \max_{\prec_i}(X) := \{ w \in X \mid \forall w' \in X : w' \leq_i w \}, \text{ where } X \subseteq W$
- ▶ $[w]_i := \{w' \in W \mid w \sim_i w'\}$

$$\mathcal{M}_1, w_1 \models K_a p$$

$$\mathcal{M}_1, w_1 \models K_a p$$

$$\mathcal{M}_1, w_1 \models K_a p$$

$$\mathcal{M}_1, w_1 \models K_a p$$

a knows p

adoesn't know \boldsymbol{p}

$$\mathcal{M}_2, w_1 \models \neg K_a p$$

$$\mathcal{M}_2, w_1 \models \neg K_a p$$

$$\mathcal{M}_2, w_1 \models \neg K_a p$$

$$\mathcal{M}_2, w_1 \models \neg K_a p$$

$$\mathcal{M}_2, w_1 \models \neg K_a p$$

$$\mathcal{M}_2, w_1 \models \neg K_a p$$

- $\blacktriangleright [\varphi]_{\mathcal{M}} \leftrightharpoons \{w \in W \mid \mathcal{M}, w \models \varphi\}$
- $\blacktriangleright [w]_i \leftrightharpoons \{w' \in W \mid w \sim_i w'\}$

- $\blacktriangleright [\varphi]_{\mathcal{M}} \leftrightharpoons \{w \in W \mid \mathcal{M}, w \models \varphi\}$
- $\blacktriangleright [w]_i \leftrightharpoons \{w' \in W \mid w \sim_i w'\}$
- ► $max_{\prec_i}(X) \leftrightharpoons \{w \in X \mid \forall w' \in X : w' \preceq_i w\}$, где $X \subseteq W$

 $[\varphi]_{\mathcal{M}} \leftrightharpoons \{w \in W \mid \mathcal{M}, w \models \varphi\}$

 $[\varphi]_{\mathcal{M}} \leftrightharpoons \{w \in W \mid \mathcal{M}, w \models \varphi\}, [p]_{\mathcal{M}} = ?$

$$[\varphi]_{\mathcal{M}} \leftrightharpoons \{w \in W \mid \mathcal{M}, w \models \varphi\}, [p]_{\mathcal{M}} = \{w_1, w_2, w_4, w_5, w_6\}$$

 $[w]_i \leftrightharpoons \{w' \in W \mid w \sim_i w'\}$

 $[w]_i \leftrightharpoons \{w' \in W \mid w \sim_i w'\}, [w_1]_i = ?$

 $[w]_i \leftrightharpoons \{w' \in W \mid w \sim_i w'\}, [w_1]_i = \{w_1, w_2, w_3, w_4, w_5\}$

 $max_{\preceq_i}(X) \leftrightharpoons \{w \in X \mid \forall w' \in X : w' \preceq_i w\}$, где $X \subseteq W$

 $max_{\preceq_i}(X)\leftrightharpoons\{w\in X\mid \forall w'\in X:w'\preceq_i w\}$, где $X\subseteq W$, $max_{\preceq_i}(\{w_1,w_2,w_3\})=?$

 $max_{\preceq_i}(X)\leftrightharpoons\{w\in X\mid \forall w'\in X:w'\preceq_i w\}$, где $X\subseteq W$, $max_{\preceq_i}(\{w_1,w_2,w_3\})=\{w_3\}$

 $\max_{\preceq_i}(X) \leftrightharpoons \{w \in X \mid \forall w' \in X : w' \preceq_i w\}$, где $X \subseteq W$, $\max_{\prec_i}([w_2]_i) = ?$

 $\max_{\preceq_i}(X)\leftrightharpoons\{w\in X\mid \forall w'\in X:w'\preceq_i w\}$, где $X\subseteq W$, $\max_{\preceq_i}([w_2]_i)=\{w_4,w_5\}$

 $\mathcal{M}, w_1 \models B_i p$ $\mathcal{M}, w_6 \not\models B_i p$

 $\underbrace{w_1:p,q}$

$$\underbrace{w_1:p,q}_{a}$$
 $\underbrace{w_2:p,\overline{q}}_{a}$

STRONG COMMON BELIEF

Group Knowledge and Belief

$$\varphi := K_G \varphi \mid B_G \varphi \mid C_G \varphi \mid CB_G \varphi \mid CB_G^* \varphi$$

Everybody knows...

$$K_G\varphi:=\bigwedge_{i\in G}K_i\varphi$$

Everybody knows (n degree)

$$K_G^n := \underbrace{K_G \dots K_G}_n$$

Common Knowledge

$$C_G\varphi:=\bigwedge_{n=1}^\infty K_G^n\varphi=K_G\varphi\wedge K_G^2\varphi\wedge K_G^3\varphi\wedge\ldots$$

Properties of Common knowledge

- $ightharpoonup \mid C_G \varphi \to \varphi$
- $ightharpoonup \mid C_G \varphi \to C_G C_G \varphi$
- $\blacktriangleright \models \neg C_G \varphi \to C_G \neg C_G \varphi$

Everybody Believes...

$$B_G \varphi := \bigwedge_{i \in G} B_i \varphi$$

Everybody believes (n degree)

$$B_G^n := \underbrace{B_G \dots B_G}_{n}$$

Common Belief

$$CB_G\varphi := \bigwedge_{n=1}^{\infty} B_G^n \varphi = B_G\varphi \wedge B_G^2 \varphi \wedge B_G^3 \varphi \wedge \dots$$

Strong Common Belief

$$CB_G^*\varphi := C_G(B_G\varphi) = \bigwedge_{n=1}^{\infty} K_G^n(B_G\varphi)$$

Properties

1.
$$\models C_G \varphi \to C_B^* \varphi$$

2.
$$\models C_G \varphi \to CB_G^* \varphi$$

3.
$$\not\models C_B^* \varphi \to C_G \varphi$$

4.
$$\models CB_G^*\varphi \to CB_G\varphi$$

5.
$$\not\models CB_G\varphi \to CB_G^*\varphi$$

6.
$$\not\models CB_G^*\varphi \to \varphi$$

7.
$$\models CB_G^*\varphi \to CB_G^*CB_G^*\varphi$$

8.
$$\models \neg CB_G^*\varphi \to CB_G^*\neg CB_G^*\varphi$$

Property	Axiom	$C_G \varphi$	$CB_G\varphi$	$CB_G^*\varphi$
Factivity	$\Box\varphi\to\varphi$	✓	×	×
Positive Introspection	$\Box\varphi\to\Box\Box\varphi$	\checkmark	\checkmark	\checkmark
Negative Introspection	$\neg \Box \varphi \to \Box \neg \Box \varphi$	\checkmark	×	\checkmark

Table: Properties of epistemic/doxatic operators

TAXONOMY OF ASSERTIONS

Literal assertion vs. Non-literal assertion

 $S:\varphi$ in the context c

1. Non-literal assertion: $CB_{S,H}^* \neg \varphi$

2. Literal assertion: $\neg CB_{S,H}^* \neg \varphi$

1. Non-literal assertion

- 1. Non-literal assertion: $CB_{S,H}^* \neg \varphi$
 - ▶ 1.1. Conventional (non-literal) assertion $\exists \psi : CB_{S,H}^*(\varphi \leadsto \psi)$ irony, metaphor, hyperbole etc.
 - ▶ 1.2. Nonconventional (non-literal) assertion $\neg \exists \psi : CB^*_{S,H}(\varphi \leadsto \psi)$

2. Literal assertion

- 2. Literal assertion: $\neg CB_{S,H}^* \neg \varphi$
 - ▶ 2.1. Trivial assertion $CB_{S,H}^*\varphi$
 - ▶ 2.2. Non-trivial assertion $\neg CB_{S.H}^*\varphi$

2. Literal> 2.1. Trivial assertion

- 2.1. Trivial assertion: $CB_{S,H}^*\varphi$
 - ▶ 2.1.1. Conventional (trivial literal) assertion $\exists \psi : CB_{S,H}^*(\varphi \leadsto \psi)$
 - ▶ 2.1.2. Non-conventional (trivial literal) assertion $\neg \exists \psi : CB_{SH}^*(\varphi \leadsto \psi)$

2. Literal> 2.2. Non-trivial assertion

- 2.2. Non-trivial assertion: $\neg CB_{S,H}^*\varphi$
 - ▶ 2.2.1. Deceptive assertion $B_S \neg \varphi$
 - ▶ 2.2.2. Non-deceptive assertion $\neg B_S \neg \varphi$

2. Literal > 2.2. Non-trivial > 2.2.2. Non-deceptive

- 2.2.2. Non-deceptive assertion: $\neg B_S \neg \varphi$
 - ▶ 2.2.2.1. Truthful assertion $B_S \varphi$
 - ▶ 2.2.2.2. Bluffing assertion $\neg B_S \varphi$

Epistemic Taxonomy of Assertions

